3k^2-k-14=0

Simple and best practice solution for 3k^2-k-14=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3k^2-k-14=0 equation:



3k^2-k-14=0
We add all the numbers together, and all the variables
3k^2-1k-14=0
a = 3; b = -1; c = -14;
Δ = b2-4ac
Δ = -12-4·3·(-14)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{169}=13$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-13}{2*3}=\frac{-12}{6} =-2 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+13}{2*3}=\frac{14}{6} =2+1/3 $

See similar equations:

| 3k^2=k+14 | | 2x+10°=3x-50° | | 4k^2-k-10=0 | | 4x-7=10x-11 | | 14=(6+z/2) | | 5g+3=11g-2 | | 8a-16-5-6a=85-3a | | y+3.4=-9.7 | | 8a-16-6a=85-3a | | 3r-1=2r+5 | | 8(3x+2)=2(13x-5) | | (x+50)+(x+10)+90+90=360 | | 4x÷12=25 | | 6x^2-30=24 | | (x+20)+(2x-40)+(2x-20)=180 | | -32=4(x-6 | | (x+20)+(2x-40)+(2x-20)=180 | | 52+2p=7 | | 10=2(x-4 | | (x+30)+(x+10)+2x=360 | | 25x2+25x-36=0 | | (2t)3=8 | | 3x-2/x-4=7 | | x¬-2=0.0625 | | 3x+20+40=18 | | 169x2+196=0 | | x^-2=0.0625 | | (2x+7)-3=12x+5 | | 25=-3v+4 | | x+x+20+x+40=18 | | 30=-5(2a-7) | | x+5-2x+15=-x+4x |

Equations solver categories